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Abstract. The properties of a weakly ionized plasma with a high concentration of flowing neutrals are
discussed as well as the excitation of ion sound oscillations propagating obliquely to the magnetic field
lines. The model used in the present study includes collisions of plasma species with neutrals in the
limit when electrons are magnetized but ions are not. The electron collision frequency is higher than the
shifted wave frequency, which allows for the fluid description of the electrons. The ion-neutral collision
frequency remains arbitrary and, therefore, the ion species is described by a collisional Boltzman kinetic
equation. The electron drift in the perpendicular direction results in the instability of accidentally excited
ion sound oscillations, which turn out to be highly unstable for practically all physically acceptable values
of the electron drift. In addition, the presence of a population of hotter electrons is shown to reduce the
perpendicular electron drift and to increase the instability threshold.

PACS. 52.35.Fp Electrostatic waves and oscillations (e.g., ion-acoustic waves) – 52.25.Ya Neutrals in
plasmas – 52.25.Dg Plasma kinetic equations

1 Introduction

Neutrals in a plasma imply a higher degree of complexity
and a plethora of processes that are absent in a purely
ionized plasma. Electron/proton collisions with neutrals
may become dominant, compared to the collisions between
charged particles, if the ionization is very weak, such as in
the case of the lower layers in the terrestrial ionosphere,
in the solar photosphere, and in most of the astrophysical
clouds. In certain situations, this may result in a perma-
nent creation and loss of plasma species [1,2], so that an
equilibrium state is achieved as a balance between these
two processes. Yet, even if such inelastic collisions are
absent or negligible, elastic collisions with neutrals may
result in novel phenomena and wave instabilities. Under
laboratory conditions this may result in the formation of
coherent structures like spirals [3] and tripoles [4]. This do-
main of predominant elastic collisions with neutrals will
be discussed also in the present study, in which an ion
sound wave is excited by a neutral flow and by the con-
sequent electron drift in the direction perpendicular to
both the neutral flow and the magnetic field lines. Such a
neutral motion appears naturally in various plasmas. For
example, in the case of the very weakly ionized terres-
trial ionosphere this comes due to tidal effects [5], while
in the case of the Sun the complete photosphere consists
of a granular network of convective motion caused by the
heating from the solar interior.
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Normally, an ion sound wave in a hot ion plasma is
Landau damped, and waves with wavelengths far exceed-
ing the electron Debye radius may propagate if

f(τ) ≡ (ziτ)3/2 exp(−ziτ/2) � 1.

Here, τ = Te/Ti and zi is the ion charge number. For
an electron-proton plasma f(τ) becomes completely neg-
ligible for τ ≥ 15. However, for higher ion charges, e.g.
zi = 5, f(τ) becomes negligible already at τ ≥ 3. Thus,
highly charged and hot ions practically do not contribute
to the Landau damping as long as τ ≥ 3, a condition that
may be taken as always satisfied.

In the presence of an electron stream described by
a velocity ve0, the ion sound in an ordinary electron-
proton plasma may become unstable [6]. The incre-
ment/decrement is then given by
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(π

8

)1/2

kcs
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)
− τ3/2 exp
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and the mode is unstable provided that

ve0 > cs

[
1 + (mi/me)1/2f(τ)

]
. (1)

Here cs = (κTe/mi)1/2 is the ion sound speed. For f(1) =
0.6 it is seen that the instability develops if ve0 > 27cs,
while for f(10) = 0.2 the threshold is still high, viz. ve0 >
10cs.

The physical picture and the stability/instability con-
ditions may become different in a weakly ionized plasma
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with dominant collisions with neutrals and in the presence
of the free energy stored in the flow of the neutral fluid,
and these phenomena will be discussed further in the text.

2 Equilibrium with neutral flow

According to reference [7] and many subsequent papers
(e.g. [8,9]), in a weakly ionized plasma a macroscopic mo-
tion of neutrals perpendicular to the magnetic field struc-
tures, like spot regions in the solar photosphere, will drag
along the tiny ion population, while electrons have the
tendency of staying behind as being stuck to the magnetic
field lines, producing in that way a large scale electric field.
This is due to the fact that, in spite of the collisions, the
electrons may behave as magnetized particles, while ions
(protons), in view of their considerably larger mass and
due to their collisions with neutrals, are essentially un-
magnetized. In the next stage, this induced electric field
causes an electron motion in the same direction with an
additional retardation of the ion motion, until the moment
when a quasi-static state is formed in which neutrals move
forward, dragging ions and subsequently electrons in the
same direction, all in the presence of the induced elec-
tric field. If the neutral motion is in the radial direction
(i.e., locally along the x-axis), perpendicular to the mag-
netic field lines (which may be assumed in the z-direction),
this electric field will cause an additional poloidal electron
drift (locally in the y-direction). Assuming a quasi-static
equilibrium state in which, similar to reference [7], the
dominant forces are the electromagnetic and collisional,
eventual pressure terms associated with the equilibrium
density/temperature gradients are omitted. Note however
that the pressure terms are kept in the description of the
electron perturbations. This situation is well described by
the following set of fluid equations:

en0(E0 + vi0 × B0) −min0νin(vi0 − vn0) = 0, (2)
−en0(E0 + ve0 × B0) −men0νen(ve0 − vn0) = 0. (3)

Here, the standard notation is used, quasi-neutrality is
assumed and the collision frequencies include electron and
ion collisions with neutrals. In the regime of a quasi steady
state and for an ambipolar drift, this yields the electric
field in terms of the neutral speed:

E0 =
[
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In the case of magnetized electrons and un-magnetized
ions, i.e.

Ωe

νen
� 1,

Ωi

νin
� 1, (5)

the electric field becomes

E0 = −[vn0νinΩ
2
e/(eνen)][Ω2

e/(miνen) + νin/me]−1. (6)

This can be further simplified if

Ωe

νen

Ωi

νin
> 1, (7)

yielding [7]

E0 = −miνin

e
vn0. (8)

Using conditions (5) and (7), we have ve0x ∼ vi0x ≈
vn0νenνin/(ΩeΩi) and the electron drift velocity to the
leading order terms becomes

ve0 ≡ ve0y =
νin

Ωi
vn0. (9)

In view of (5) we note that the magnitude of the electron
drift considerably exceeds the neutral flow speed, while
the ion drift is negligible.

3 Electron drift driven ion sound

When the conditions given above are satisfied, an ion
sound wave may propagate obliquely to the magnetic field
lines in such a way that the electron dynamics remain
mainly parallel to the magnetic field lines [10]. This is seen
from the following. For perturbations ∼exp(−iωt+ ik · r),
and for frequencies satisfying νen > ω − k · ve0, we may
use the fluid equations for electrons. From the electron
perpendicular momentum equation we obtain the total
electron perpendicular velocity:
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Here, and in the text below, ναn = σnnnvTα, where v2
Tα =

κTα/mα and σn is the cross section of the neutrals. The
parallel electron motion is described by

0 =
e
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− νenvez . (11)

The perpendicular motion introduces the following terms
in the electron continuity equation:

∇⊥ · (nev⊥e) = ∇⊥
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The non-zero terms, being multiplied by νe/Ωe and due
to (5), can be neglected. As a result, the electron continu-
ity equation yields

ne1

ne0
=

iek2
zφ1

meνen(ω − k · ve0) + ik2
zκTe

. (12)



J. Vranjes and S. Poedts: Unstable ion sound in plasmas with drifting electrons 259

In the case of an arbitrary ratio of the ion-neutral collision
frequency and the wave frequency, the fluid equations for
ions may become unable of capturing the essential physical
effects and the kinetic description may be needed. Hence,
the ion dynamics is described by the Boltzman kinetic
equation with the Krook’s collisional term, which is good
enough for ion collisions with neutral having nearly equal
mass

∂f1
∂t

+ v
∂f1
∂r

+
e

mi
(E1 + v × B0)

∂f1
∂v

= −νinf1.

This yields the perturbed distribution function de-
scribed by

f1 = − ie∇φ1 · v
miv2

T i(ω + iνin − k · v)
f0. (13)

Performing the usual integration for the ions we obtain

ni1

ni0
= − eφ1

miv2
T i

[
1 − J+

(
ωi
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)]
. (14)

Here, J+(α) = [α/(2π)1/2]
∫

c
dζ exp(−ζ2/2)/(α− ζ) is the

plasma dispersion function, ζ = v/vT i, and ωi = ω +
iνin. Using the quasi-neutrality we obtain the dispersion
equation:

1
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(15)
Expanding J+(α) in the limit |α| � 1 and |Re(α)| �
|Im(α)| we obtain the dispersion equation
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This, under the condition that ω = ωr+iωim, |ωim| � |ωr|
yields the spectrum:
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In the imaginary part we keep ω2

r ≈ k2c2s(1 + 3/τ) and
obtain the increment/decrement approximately:
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Fig. 1. The imaginary part of the frequency (in units of ωr) in
terms of the electron drift velocity for three values of the angle
ψ = 7.5◦ (line 1), ψ = 11.25◦ (line 2), and ψ = 22.5◦ (line 3).

It is seen that there can be no instability in the case of a
counter propagating wave with respect to the drift veloc-
ity, i.e. if k · ve0 < 0. In the opposite case, the instability
sets in if
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cs
>

(1 + 3/τ)1/2

cosψ

{
1 +

[
νin

(
1 +

3
τ(1 + 3/τ)2

)

+kcs
(π

8

)1/2

τ3/2

(
1 +

3
τ

)
exp

[
−τ

2

(
1 +

3
τ

)]]

× 2mik
2
z

meνenk2[1 + 3/(τ + 3)]

}
. (19)

Here, ψ is the angle between k and ve0, and the factor
3/τ can be omitted for larger values of τ . This situation is
presented in Figure 1, where the ratio ωim/ωr is plotted
in terms of the normalized electron drift for the normal-
ized value νen/ωr = 10 and consequently for νin/ωr =
(νen/ωr)[Time/(Temi)]1/2, where τ = 10, and the angle
ψ takes values 7.5◦, 11.25◦, 22.5◦ for the lines 1−3, re-
spectively. The fast growing mode, driven by the electron
current, has a threshold which shifts towards larger val-
ues of ve0/cs, for larger values of the angle ψ. For the
lines 1−3 the mode becomes unstable for ve0 exceeding
2cs, 3.3cs and 10.7cs, respectively. Note that these values
are well below (1).

The shift of the instability threshold in the limit νin �
ωr and for τ = 10 is presented in Figure 2, for several
values of the electron collision frequency and for the angle
ψ in the range 0 < ψ < π/2. From (19) one finds that in
this limit the instability condition becomes

ve0

cs
>

1
cosψ

(
1 + 377

kcs
νen

sin2 ψ

)
. (20)

Here, the limit ψ → 0, which corresponds to wave propa-
gating along the electron drift, is not justified as it violates
the conditions introduced for the electron dynamics. For
an electron-proton plasma and for the ion sound, this ap-
proximately means that there must be a kz > k/43, or
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Fig. 2. Threshold value of the perpendicular electron drift
in terms of the angle between the drift velocity vector and the
wave-vector. The lines 1−3 are for the ratio kcs/νen 1/10, 1/50,
1/100, respectively. Unstable values of the drift are above the
lines.

ψ > 1.33◦. Similarly, the limit ψ → π/2 implies prop-
agation perpendicular to the drift and an infinite drift
magnitude for the instability. It is seen that, depending
on the angle of the propagation, the threshold can be
much smaller compared to (1), which according to (19)
appears, firstly, due to the oblique propagation because
the critical term is multiplied by the square of kz/k (i.e.,
by sin2 ψ), and, secondly, due to the collisions (i.e., the
term kcs/νen � 1).

4 An additional hotter electron component

Next, we consider the case when an additional popula-
tion of electrons with a higher temperature is present in
the considered plasma. Studies on such plasmas are avail-
able in the literature, both in laboratory [11] and space
plasma context [12]. In the photosphere and in the ter-
restrial ionosphere such a situation may occur due to an
inflow of hotter electrons from upper layers, e.g., due to
reconnection processes in which a potential difference is
created [13] resulting in an acceleration of the electrons
along the magnetic field lines. Observations in the auro-
ral regions [12] reveal the existence of a dominant hotter
electron population with energies measured in keV, and a
cold population with an energy of a few tens of eV. In the
weakly ionized plasma discussed here, the thermalization
of the two electron groups is slow because collisions with
heavy neutrals (which, due to the huge difference in mass,
is inefficient to considerably change the electron energy) is
dominant, so that such a two-temperature electron plasma
can last relatively long. The quasi-static equilibrium equa-
tions (2), (3) are supplemented by one more equation

−enh0(E0 +vh0 ×B0)−menh0νhn(vh0 −vn0) = 0. (21)

Here, the index h denotes the hotter electron component.
The quasi-neutrality condition now reads ni0 = ne0 +nh0,

and we also allow for the hotter electron component to
have an additional velocity along the magnetic field lines
which may be determined by external conditions as men-
tioned above.

In the quasi-static stage, the ion flux becomes equal to
the sum of the two electron fluxes:

ni0vi0x = ne0ve0x + nh0vh0x, (22)

which yields approximatively the electric field

E0 =
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e
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.

The contribution of the h electron component to the in-
duced electric field depends on its temperature and con-
centration. For a high temperature it may be that

Ωe � νhn. (24)

In this case, the h electrons behave as un-magnetized and
the electric field is reduced. Also, in this limit, their drift
in the y-direction is negligible similar to that of the ions.
Using conditions (5) and (24) the electric field (23) be-
comes
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]
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Obviously, because of the larger denominator, this yields
a smaller electric field than equation (6). This is expected
because of the increased collisions and, consequently, more
effective drag by neutrals. On the other hand, a higher
relative concentration of the electron population h results
in a reduced electric field, and vice versa. This is also
related to higher collision rates and, consequently, lower
magnetization, yielding a smaller induced electric field,
and vice versa. It can be easily shown that for a colder h
population the effect is negligible.

5 Effects of a hotter electron specie
on the ion sound

To study the effect of the h population on the ion sound,
we use the same conditions as before. The parallel and per-
pendicular momentum equations together with the conti-
nuity equation of the h component yield an additional
equation:
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, (26)
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Here, contrary to (12), η 	= 1 because of the arbi-
trary ratio νhn/Ωe. Equation (26) is combined with equa-
tions (12), (14), with the assumption of quasi-neutrality,
yielding

1
κTi
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) [
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zκTh

= 0, (27)

where ωi = ω+iνin. Neglecting all dissipative effects yields
the modified dispersion equation for the Landau damped
ion sound:
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Comparing this with the standard e-i collision case [6], it is
seen that the hotter electron specie makes the electron-ion
temperature ratio effectively larger. Here, γ > 1 as long
as Th/Te > 1, so the frequency is higher. Note also that
γ → Th/Te when nh0/ne0 � 1 and nh0/ne0 � Th/Te, and
γ → 1 when nh0/ne0 → 0. Hence, in the case of the solar
photosphere or the terrestrial ionosphere the inflow of hot-
ter electrons implies the possibility of an ion sound wave
with a frequency that can far exceed the frequency which
is normally expected from the local plasma parameters.
Yet, whether such a wave will indeed be excited or not,
may be deduced only by solving the full dispersion equa-
tion (27). Omitting the ion collision terms this dispersion
relation reduces to
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Here,
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Equation (30) can be drastically simplified in the limit
when νhn/kzvTh is not much larger than 1. This together
with ω2/kzvTh � 1 yields α1 = Te/(ηTh), and β1 becomes
negligible. The drift/flow effects and the perpendicular dy-
namics of the h component in this limit both vanish, and
the spectrum is approximately given by (28), while the
imaginary part of the frequency becomes
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Here, using ωr in which the τ term is omitted, one finds
that the instability sets in under the condition
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cosψ
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Since γ > 1 it is clear that, compared to (19), the insta-
bility threshold is higher.

6 Conclusions

We have discussed the effects of the motion of neutrals
on the behavior of the ion sound mode in a weakly ion-
ized plasma. Plasmas of that kind are frequently encoun-
tered both in the laboratory [1,3], and in space [5,7]. Col-
lisions of plasma species with neutrals in such plasmas
play a decisive role and involve possibly different sets of
(kinetic) equations for ions, and (fluid) equations for elec-
trons. For the same reasons, electrons may behave as mag-
netized while ions may remain un-magnetized and, conse-
quently, the dynamics of the two species becomes very
different [10]. In the case of an ion sound propagating in
such a system, there is no preferential direction for the ion
motion, while the electron dynamics is strongly influenced
by the magnetic field. As a result, the spectrum and the
increment/decrement of the mode becomes different com-
pared to the standard ion-electron case. This is particu-
larly obvious for the mode increment, which in a plasma
with neutrals may increase and, in the same time, the in-
stability threshold may decrease. In fact, the instability
itself is fed by the motion of neutrals, which is transferred
to the plasma species making the mode unstable.

An additional specie of hotter electrons, which is fre-
quently observed in the auroral regions of the terrestrial
ionosphere, introduces certain changes in the mode behav-
ior. These hotter electrons are more collisional and, there-
fore, they perform a motion similar to that of the ions. As
a result, the induced electric field becomes smaller due to
the fact that a part of the ion charge is shielded by the
hotter electron specie moving nearly in the same manner,
while in the same time the instability threshold is changed
and increased. We underline an essential difference be-
tween the standard electron-drift driven instability condi-
tion equation (1) and our current results equations (18)
and (31). It is seen that, neglecting the τ contribution,
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the necessary instability condition in the standard case,
ve0 > cs, is more easily satisfied compared to the present
case where ve0 > cs/ cos(ψ). However, the actual sufficient
instability condition is, in fact, much more easily satisfied
in the present case.
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